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Certain anomalous solutions to the Dirac and relativistic Schrodinger equations for the Coulomb potential, 
some of which have not been investigated before, are analyzed. These are solutions for orbital angular mo
mentum 1 = 0 and l = \ in the Schrodinger case and total angular momentum j=0 in the Dirac case that are 
quadratically integrable for all energies E<0. The purpose is to determine if there exist fundamental reasons 
for discarding them, or if they describe meaningful physical systems. Reasons are given why they may be 
discarded for real two-body systems, such as the hydrogen atom. These solutions can only be meaningful for 
systems which have an exact one-body, pure Coulomb relativistic Hamiltonian. They are valid for repulsive 
as well as attractive potentials. It is suggested that the / = 0 relativistic Schrodinger solution be identified as 
the wave function of a nonrigid charged spherical shell. In addition, it is suggested that a particle fluctuating 
about its own center of mass in zitterbewegung-type motion may experience a repulsive Coulomb self-
potential and have an exact one-particle-type Hamiltonian. The charge distributions obtained in this 
interpretation for two of the solutions have mean radii ~e2/moc2 and rms radii ^-hjm^c. 

I. INTRODUCTION 

IN a previous paper,1 the condition of finiteness of the 
wave function at the origin, usually imposed in non-

relativistic quantum mechanics, was discussed. The 
"anomalous" 1=0 solution, treated by Tietz,2 Kramers,3 

and others,4 which is usually excluded by such a condi
tion (see, e.g., Bethe and Salpeter,5 or SchifT6), was 
shown not to obey the nonrelativistic (NR) Schrodinger 
equation and, hence, not to require exclusion from a 
N R theory. I t does obey the relativistic Schrodinger 
(RS) equation, as was shown in reference 1, and as we 
show presently, there is another solution for Z = J, as 
well as an analogous solution to the Dirac equation. 
None of these solutions has a satisfactory NR limit. 

We now wish to consider the relativistic equations 
with Coulomb potential in more detail with regard to 
such "anomalous" solutions. We define these as quad
ratically integrable solutions to one of the equations of 
quantum mechanics which are superfluous as far as 
present theory is concerned. We wish to investigate 
their mathematical and physical properties in order to 
ascertain whether there exists some fundamental basis 
for discarding them, or whether they may describe 
meaningful physical systems. Particularly pertinent is 
the fact that they can describe repulsive, as well as 
attractive, Coulomb systems. 
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Special Weapons Center, Kirtland AFB, New Mexico, under 
Contract AF 29(601)-2774. 
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Our conclusion is that they may be discarded as far as 
real two-particle systems (e.g., the hydrogen atom) are 
concerned. This is based on the observation that the 
simple Coulomb Hamiltonian that generates these solu
tions is not physically valid for a two-body system if the 
system is in a state described by these solutions; viz., 
the equation and these solutions do not form a physically 
self-consistent scheme. We suggest that a pseudo one-
body model exists, that of a charged spherical shell, for 
which one of the anomalous solutions, the one for / = 0, 
is valid. Although we cannot yet prove that this model 
and the anomalous solution wave function we associate 
with it are physically meaningful, the results are very 
plausible. They are also important, since the charged 
spherical shell is such a tantalizing classical model for 
the electron. I t has been discussed extensively in the 
literature from the classical standpoint,7,8 it has been 
shown to be consistent with quantum electrodynamics 
and relativity without the necessity of nonelectromag-
netic (Poincare) forces,7 and some promising but incon
clusive results have been obtained through attempts to 
quantize this model.9,10 In addition, we can now show 
that such a model is stable according to quantum me
chanics, and will not blow up from its internal Coulomb 
stress. 

We go on to suggest the possibility that the half-
integral solutions may pertain to another pseudo one-
body model. The suggestion is that a particle can move, 
to a limited extent, in its own field ("zitterbewegung"), 
but that in so doing it experiences a repulsive Coulomb 
self-potential. The anomalous solutions may be in-
terpretable as bound states of this repulsive system. No 
attempt is made, in this paper, to set up a complete 
theory of this nature, although considerable work has 
been carried out and the indications obtained are 

7 F. Rohrlich, Am. J. Phys. 28, 639 (1960). 
8 T . Erber, Fortschr. Physik 9, 343 (1961). 
9 D. Bohm and M. Weinstein, Phys. Rev. 74, 1789 (1948). 
10 P. A. M. Dirac, Proc. Roy. Soc. (London) A268, 57 (1962). 
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favorable. Such an attempt is obviously a difficult 
problem with far-reaching consequences. The scope of 
the problem makes it desirable to merely present the 
solutions and their simpler properties with a provisional 
interpretation, based somewhat on conjecture, rather 
than await a comprehensive denouement. Whether the 
interpretation proposed is correct or not, the bearing of 
these solutions and the ideas presented therewith on the 
interpretation of currently accepted equations and 
theory is sufficiently important to warrant their general 
consideration. 

Therefore, we first present the solutions mathemati
cally, without regard to their possible physical interpre
tation, in Sec. I I . A discussion vis & vis current theory is 
carried out in Sec. I l l , and Sec. IV is devoted to the 
theory of the charged spherical shell. The remainder of 
the paper (Sec. V) concerns the possible interpretation 
of the half-integral solutions, and a computation of their 
normalization and the mean radii of their " charge 
distributions." 

II. THE ANOMALOUS SOLUTION TO THE DIRAC 
EQUATION FOR THE COULOMB POTENTIAL 

A. The Radial Dependence 

The general solution to the radial part of the Dirac 
equation for a Coulomb potential is given in reference 1 
in terms of functions that vanish at infinity for all 
values of the angular momentum parameter K and 
energy E. The two functions which constitute this 
solution are 

f(p) = N<1e-^pv-i£(K+A/e)t(l+p-A, 2p+l;p) 
- ^ - A , 2 £ + l ; p ) ] , (2.1) 

g(p) = N2e-^p^£(K+A/e)Kl+p-A, 2p+l;p) 
++(p-A,2p+l;p)-]. 

In these formulas, 

N1=l(l-e)^/(K+A/e)2N; 

N2=Z(l + eyi*/(K+A/em; 

N is the normalization constant, K is an eigenvalue of the 
operator6 fr1P(<Ff'L+fi) (the notation is that of refer
ence 6), and ^ is a confluent hypergeometric function. I t 
is defined in terms of the Whittaker function11 WA, M (#) , 
where k— (c/2) — a and ju= (c/2) — \, by 

^(a,c;*) = e^2ar+-W f c , . (2.2) 

Its properties are adequately defined and discussed in 
the Bateman Manuscript Project, Higher Transcen
dental Functions.12 The symbols p, A, e, and p are de-

11 E. T. Whittaker and G. N. Watson, A Course in Modem 
Analysis (Cambridge University Press, New York, 1950), 4th ed. 

12 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 
Higher Transcendental Functions (McGraw-Hill Book Company, 
Inc., New York, 1953). 

fined in terms of standard quantities by the relations: 

A = 7 e ( l - e 2 ) - 1 / 2 , 

p=2X0r, 

e=W/moC2, 

X o - ( m 0 ^ ) ( l - € 2 ) 1 / 2 , 

y=Ze2/nc, 

W is the total energy, including the rest mass. We define 
E as W—ntoc2. Whether the functions / and g of Eq. 
(2.1) are quadratically integrable depends on their be
havior as p—>0. For \f/(a,c; p) this is given by1-13 

l/T(a)pc-1, so that 

g(p), / ( p ) - l / { r [ l + ( i c 2 - 7 2 ) 1 / 2 - A > < ^ - ^ ) ^ ^ i } . (2.4) 

Therefore, as noted in reference 1, since the exponent of 
p is 1 + (1—72)1/2 for 1=0, f and g are not integrable in 
that case. (The * large component" g for 1=0 corre
sponds in the NR limit to the anomalous solution of the 
Schrodinger equation discussed in reference 1, which 
turns out to be an unsatisfactory solution at the origin.) 
The poles of the T function in Eq. (2.4), viz., negative 
integral values of \—p—A, lead to the normal hydrogen 
energy spectrum and eigenfunctions. In terms of K, poles 
of the T function occur when the relationship14 

l + ( / c 2 ~ 7 2 ) 1 / 2 - A = l - < ^ = 1 , 2 , 3 , ••-, (2.5) 

is satisfied. 
If now K can take on the value J, then we have that 

| ^ H ( l / 4 - 7 2 ) 1 / 2 ^ | - Y 2 , ( T 2 « l ) . 

In this case, | p | + l ~ f — 7 2 , so that p and g2 behave at 
the origin according to 

/ 2 , g 2 ^ l / [ r ( 3 / 2 - 7 2 ~ A ) p ^ 2 ] , p - > 0 . (2.6) 

This is clearly quadratically integrable as long as 7 2 ^ 0 , 
for any energy E<0 [for which solutions of the form 
Eq. (2.1) exist]. In passing to the NR limit, we set 7 2 = 0 
and, therefore, the integrability ceases. I t is replaced by 
a logarithmic divergence as p —»0. 

This integrability of the Dirac function for the lowest 
K value (the value /c=0 does not occur in Dirac theory) 
off the hydrogen spectrum is analogous to the situation 
in the RS case where the 1=0 solution is integrable off 
the hydrogen-like spectrum of the RS equation. (The 

13 The solution, Eq. (2.1), is the same for both roots of the 
equation p2=K2—y2. This can be shown by a method analogous to 
the proof indicated in Eqs. (13)-(15) of reference 1. 

14 An eigenvalue also occurs for n'~0 but only for negative K. 
As pointed out in reference 5, this value requires special considera
tion; viz., in the present context, one must note that although the 
leading divergent term in \p(l-{-p—A, 2p-\-\\p) which has the 
factor [T(\-\-p—A)]-1 does not vanish, the coefficient *+A/e of 
this T function does vanish for negative K, and the leading diver
gent term in \p(p~A, 2p-j-l; p) contains [ r (^—A)] - 1 which also 
vanishes; cf., reference 5, p. 67. 
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hydrogen-like spectrum of well-behaved eigenfunctions 
for K = | , f, etc. in Dirac theory as well as the spectrum 
for Z=|, §, etc. in Schrodinger theory is a separate 
problem from that which we are considering here; we 
discuss the general half-odd integral case briefly in 
Sec. V.) 

For the repulsive Coulomb potential, one has the 
same equations as for the attractive case; the difference 
in the equation can be accounted for by selecting the 
appropriate sign of Z in the potential: V(r) = Ze2/r. 
However, quadratically integrable solutions as termi
nating polynomial eigenfunctions will no longer be 
obtainable. The selection of the \p- or Whittaker-type 
solutions [cf., Eq. (2.2)] makes it readily apparent that 
the integrability of the anomalous solutions is independent 
of the sign of Z.15 The decisive term in the series ex
pansion of the radial wave functions for the repulsive 
case can be written as 

g(p),/(p)-V{rCi+(i/4-72)1/2 

+ |A| ]p 1 +d/4-^ } , p->0, (2.7) 

for the Dirac equation with K=db|. In the repulsive 
case, the T functions have positive arguments and, 
therefore, have no poles and produce no spectrum. The 
anomalous solutions do not, of course, depend on this 
for their integrability, so we must conclude that these 
must describe repulsive as well as attractive systems, if 
they describe any systems at all. We must verify that 
acceptable angular solutions to the Dirac equation 
exist for the K= ± | eigenvalues. We note from Eq. (2.4) 
that in the repulsive case there will be no integrable 
solutions for \K\ > J . 

B. The Angular Dependence of the Dirac 
Equation for the Cases K2 = \f j=0 

The solution for the angular dependence of the Dirac 
equation is given by Bethe and Salpeter.5 The theory 
presented in reference 5 is valid for half-integral spheri
cal harmonics, as well as integral, as long as l>\ (we 
return to this point in Sec. V). In the case /=J , solutions 
are still obtainable, but with a modified formulation 
which avoids the divergent denominator (21—1)~1/2, 
which would appear in the formulation according to 
reference 5 for the case j=l—1=0. The method is indi
cated as follows. We require the Legendre functions in 
the half-odd-integral case, and take them to be defined 
as in reference 12, Sec. 3.4, viz., 

p/^HCra-M)]-1 

/i+xy'2 

X ) F(-v,v+l;l-Ki-ix), (2.8) 
\1—xl 

where F is the ordinary hypergeometric function. The 

15 Except for W=rn<iC2; in this case the attractive solution is not 
integrable, cf., reference 26 and Eq. (3.32) of reference 5. 

spherical harmonic solutions to the angular part of the 
Schrodinger equation are then taken to be 

Yi,m{e^)=-NPr^(cosB)ei^i (2.9) 

where N is the normalization constant. The second 
solution to the differential equation in the half-odd-
integral case, i.e., the solution which would be denoted 
Qv~\ti on the basis of the above choice of P, is not, in 
general, well behaved (as is well known). The additional 
point which must be made here is that in the half-odd-
integral case it turns out that we have [reference 12, 
Eq. (3.4) (17)] 

TTTOHMI+I) 
0,-IMI (x) = — P,l"l (a?). (2.10) 

2r(H-|/i |+i) 

This relation is the basis of the selection of Pv~~^ (cos0) 
as the appropriate factor in the wave function. The sign 
of m has no physical significance in the 6 factor of the 
wave function, so we are free to make this choice. 
(Changing the sign of m in the 6 dependence would just, 
by Eq. (2.10), interchange the roles of the P and Q 
functions.) If now in Eq. (2.8) we take ju to be — |JU|, 
and consider those functions for which v— |/z|, we can 
obtain them quite easily by means of the relation12 

F(a,b;b;z)=(l-z)-°, (2.11) 

and the remaining functions required for smaller values 
of | At | can be obtained from these by means of recur
rence relations. From Eqs. (2.8) and (2.11) we obtain 

Pw-'(x)= ( - J ) " sin"0/r(l+*>). (2.12) 

Thus, for example, for *>=§, we have 

4 ( _ l ) 3 / 2 

P3/2~3/2 (cos0) = sin3/20 (2.13) 
3TT1/2 

and by means of the recurrence relation preference 12, 
Eqs. (3.8) (17) and (3.8) (19)] 

dP/(x) 
PS+l(x) = -(l-x2)— nxPs(x), (2.14) 

dx 

we obtain from Eq. (2.13) 

-21/2** 
P3/2~1/2 (cos0)= cos0 sin1^. (2.15) 

Tj.l/2 

The behavior of the function Pv~
l^(x) at 6=0 is given 

by reference 12, [Eq. (3.9) 2(8)] to be 

2rM'*(l-xyM*r(l+\p\). (2.16) 

At 0=7r, Eq. [(3.4) (14)] of the same reference, which 
becomes 

Pr , " , ( -*)=JPr l , , , (*) COSTTOHM!), (2.17) 
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for half-odd-integral v and /*, shows Pv~~^^ (x) to have the 
same behavior as at 0=0 to within a factor zbl. There
fore, these functions are not singular and are quad-
ratically integrable. Furthermore, the probability (and 
current) density in Dirac theory which consists of 
bilinear products of these functions will also be well 
behaved. In. the NR limit, where derivatives of these 
functions appear, this good behavior may cease (this 
occurs in the / c = ± | cases we are now considering). 
However, our present interest is a case where the radial 
NR limit is also inadequate, and we assume that the 
model does not have a well-defined NR limit, so this 
feature should not hamper us. For Z=f, we obtain from 
Eq. (2.12) 

Pi/2-1 / 2(cosi f2\ 2X1 '2 

sin1/20. (2.18) 

For the Dirac equation, we shall also need the Q function 
for this value of I as well as the P function for l=—%. All 
of these functions turn out to be quadratically integrable, 
and are given by16 

rrl/2 

<2i/2~1/2 (cos0) = - cos0 sin"1'2!?, 
2 

P_i/2-
1/2(cos0) 

1/2N1 '2 

-0 sin~1/20. 

(2.19) 

(2.20) 

Although the 4-component Dirac wave function can be 
constructed from well-behaved P-functions alone for 
l>\ (and is, therefore, well behaved), for the l=\ case 
this is not true. For this I value one requires two P 
functions for Yi,m and Yiim-i. But for w = | , we have 
that m—1= — m, so that we need Pi/2~1/2 and Pi/21/2. 
But by Eq. (2.10), one of these must be a Q function. 
The existence of a well-behaved Dirac function when 
K = J is, therefore, dependent on the (fortuitous?) cir
cumstance that both the P and Q functions are quad
ratically integrable for l=i, and that there is required 
only the one well-behaved P-function for Z=—J. The 
normalized spherical harmonics corresponding to the 
Legendre functions of Eqs. (2.18) and (2.19) are 

F1/2t_i/2(0,^)= (COS0/TT s i n ^ e - ^ 2 . 

(The Legendre function for /=—J appears automati
cally in the derivation of the Dirac 4-component wave 
function; no spherical harmonic need explicitly be as-

18 The definition of Qf employed is that of reference 12, Eq. 
(3.4) (10). For half-odd-integral /* and v this definition becomes 

U' w - 2 r< i+H- |M| ) 

which leads to the result quoted in Eq. (2.19). 

signed to it, in keeping with its unphysical nature.) The 
phase of the normalization constant has been chosen to 
remove the imaginary factor appearing in Eqs. (2.18) 
and (2.20). By use of these functions the angular solu
tion to the Dirac equation can be obtained in complete 
analogy to the method of reference 5. The result ob
tained for /c=J is 

*/x= (VITT)-1 cos0 sin-1/20e-^2g+(r), 

*/2== (VJir)-1 s i n 1 ^ * ' 2 ^ ) , (2.21) 

2/3= (A^TT)-1 siirWde-^Uir), 

2/4=0, 
or 

Wlt= (V2TT)-I s i n 1 ' ^ ^ ' ^ ( r ) , 

f/2t= (-V^TT)"1 cos0 siir^de^g+ir), (2.22) 

«/3t=0, 

Equation (2.22), the second solution above, is the spin 
conjugate3 of the first, Eq. (2.21). For the Coulomb 
potential the normalized radial functions f+(r) and 
g+(r) are given by Eq. (2.1) with K set equal to + J. For K 
of opposite sign, i.e., —J, the result is 

flx= (i/y/2v) sin-1/20e-^/2g_(r), 

v2=0, (2.23) 

vz= (1/V2TT) cos0 sm-^de-Wf-ir), 

with a corresponding spin-conjugate solution. The com
ponents of the probability density "&*& and the current 
density (reference 6, p. 316) S=— cty*oi& for the solu
tion, Eq. (2.21), are 

^*^=(/+
2+^2)/(27r2sin0), 

Ss=2csin0g+/+, 

Sy=-2ccos<l>g+f+y 

52=0. 

(2.24) 

The trigometric radicals cancel each other and S is well 
behaved with (in polar coordinates) only a circulating <j> 
component. 

It can be easily verified that these solutions corre
spond to a total angular momentum eigenvalue j= db/c 
—•J equal to zero. That is to say, they are eigenfunctions 
of the operators 

(L+Jftcr')2, 
and 

(L,+|W), 
with eigenvalue zero (in the notation of reference 6). 

C. The Relativistic Schrodinger Anomalous 
Solutions 

We obtain the behavior at the origin of the solutions 
to the RS equation for the Coulomb potential that 
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vanish at infinity again from reference 1. This behavior 

£ ( p ) ~ l / r ( S ' + l - W + 1 , (2.25) 
where 

S'= - * + [ ( / + V2) 2 -Y 2 ] 1 / 2 , 
and 

\'=Ze2W/hc(rn,2cA-W2)li2. 

This is quadratically integrable for 1=0 and / = J for all 
values of X'. In the attractive case (Z>0) there is, of 
course, the well-known hydrogen-like spectrum at the 
poles of the T function. In the repulsive case (Z<1) the 
T-function has no poles so the only integrable solutions 
are for 1=0 and J. The mathematics of the 1=0 case has 
already been discussed in reference 1; consequently, at 
this point, we merely display the l=% solution. I t is 
given by 

^ ± ( r ) = ^e-^2p-1 / 2 + ( 1-7 2 ) 1 / 2 

x « + ( i - 7 2 ) 1 / 2 - V ; i + 2 ( i - 7 2 ) 1 / 2 ; p ] 

sin1/20e±i<l>/2 

X , (2.26) 
7T 

where N is the radial normalization constant and 
p={2(m0

2ci-W2)l/2/^c}r. The 6 derivative of this wave 
function (whose angular part is Piff112) is Qi/2~1,2

y and as 
pointed out previously, this is also quadratically inte
grable [cf, Eq. (2.19)]. 

III. DISCUSSION: THE ANOMALOUS SOLUTIONS 
AND THE REAL TWO-BODY PROBLEM 

We have now two types of anomalous solutions: one 
to the RS equation and one to the Dirac equation. Both 
fail in the NR limit; the first by ceasing to obey the 
proper equation, and the second by ceasing to be 
quadratically integrable. 

Rather than attempting to exclude such anomalous 
relativistic solutions from quantum-mechanical theory, 
we wish to investigate the possibility of associating such 
solutions with different classical models than the point-
charge model of the hydrogen atom (or analogous sys
tem such as a mesic atom). Such an attempt should be 
tantamount to finding another system, perhaps an ex
tended one, whose Hamiltonian is mathematically simi
lar to that of two point charges, and in proving that 
the association is reasonable. A charged spherical shell 
is such a system which is, furthermore, not now included 
in the domain of elementary quantum mechanics. 

However, before attempting such a program, it seems 
essential to answer the question: if these solutions are to 
be physically meaningful, why do they not describe a 
state of the hydrogen atom (or similar attractive two-
particle system) or a state of a repulsive two-particle 
system? I t is reasonably certain on empirical grounds 
that such an association cannot be made. Present theory 
is adequate for the hydrogen atom and hydrogenic-type 
systems, and no bound states of doubly charged systems 

appear to exist. An interesting answer to this question 
which provides additional insight into the physical 
significance of eigenvalues can be given as follows. 

If we give the anomalous solutions a physical inter
pretation, a primary feature is the fact that the charge 
density of the particle they would describe is very high 
at the origin. I t is of the form p(r) = f(B)/rq, where q lies 
between 2—2y2 and 3—y2 depending upon which solu
tion is being considered. Thus, the functions are singular 
at this point. Now this means that the difference be
tween the ordinary Dirac and RS equations and the 
" true" equations for the systems they represent will be 
very important. So important, in fact, that the ordinary 
equations will be incorrect for energies of their hydrogen
like energy spectra. "True" equations are those that 
correctly account for the finite extension of the nucleus 
and the relativistic two-particle character of the system. 
For example, in the hydrogen atom, the finite extension 
of the proton charge cloud could not be neglected in the 
presence of a large electron probability density at the 
origin; i.e., the Coulomb potential would not be correct 
for a real physical hydrogen atom whose electron proba
bility density &**& diverges as 1/r2 at the origin. 
Secondly, some of the relativistic two-body correction 
terms behave like r~z and 53(r) near the origin,5 and, 
thus, clearly should be included before obtaining a solu
tion for which they are not small. On the other hand, for 
energies lying on the hydrogen-like spectrum, the elec
tron density at the origin is very small, and the finite-
nucleus-extension and two-body effects are, therefore, 
small. If the real two-body systems have states whose 
energies lie off the hydrogen spectrum, the equation 
describing these states will have to contain much more 
structure than the ordinary Dirac and RS equations and 
one can expect its solution will be quite different than 
the anomalous solutions we have obtained. This correct 
equation then (on the basis of empirical knowledge) 
would have stable eigenstates in the attractive case only 
if this turns out to be a legitimate way to describe 
neutral elementary particles, such as the neutron, A0, 
etc., and we would expect no stable eigenstates for two 
repelling particles. Thus, we see that the simple classical 
model p2/2m—Ze2lr for the Hamiltonian of a hydrogen 
atom, when carried over into quantum mechanics, 
produces an equation whose solutions are physically con
sistent with (or insensitive to) the approximations 
inherent in it only on an eigenvalue spectrum. For 
system energies off this spectrum, the equation itself is 
no longer useful. The equation and its eigenfunctions 
form a physically self-consistent scheme. A condition 
that the wave function be finite at the origin (or "small" 
if we include the relativistic case) will be tantamount to 
a condition that a wave equation has a state or set of 
states physically consistent with the approximate for
mulation of the equation. 

For example, from the Fourier transform <£(p) oi a 
wave function ^(r ) we obtain a relation between SE^r) 
for small r and <£(p) for large p; explicitly, we can state 
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FIG. 1. The square of the radial momentum of a charged rela-
tivistic sphere with angular momentum L—0. Region I : Ordinary 
classical region, W>m0c (Curve A); Curve B for WKntoc2 has no 
allowed ordinary classical region. Region I I : Relativistically 
allowed region (dependent upon negative energy root). 

that 

H0)=(2T)-^ (d'fiKp), (3.1) 

where the major contribution comes from large p [the 
Fourier transforms of hydrogenic functions, for ex
ample, fall off as inverse powers of p in contrast to the 
exponential decrease of SF (r) for large r17]. If the con
tribution from large p is sufficiently great \F(r) will 
diverge as r—>0 and a relativistic formulation is re
quired to obtain SI>. If it is sufficiently great and SF (V), 
therefore, sufficiently divergent, the formulation will 
need to exceed the generality of Dirac or RS theory and 
contain a more exact two-body relativistic description. 

We conclude, therefore, that off the hydrogen-like 
spectrum, the anomalous solutions are solutions only to 
an "artificial" pure Coulomb potential; viz., a model 
which has an exact relativistic one-body type equation. 
Such a model exists, that of a charged, nonrigid sphere, 
and we undertake a classical analysis of this model in the 
next section. 

IV. THE CHARGED SPHERICAL SHELL 

A. Classical Considerations 

In the case of a uniform, spherically symmetric 
charge distribution, the potential at a distance R from 
the center is e/R (where e is the total charge) and the 
field energy is exactly e2/2r, where r is the radius of the 
sphere. By symmetry, the angular momentum of this 
distribution must vanish. For a distribution with angu
lar momentum L>0, the notion of rigidity would have 
to be invoked, or a nonuniform distribution allowed. In 

17 In addition to noting that <£(p) falls off slowly as p-* <w, 
perhaps, we should also note that <f>(0) is finite. This can be seen 
directly from the Schrodinger equation in momentum space for 
p = 0: 

<f> (0) = (2TT)-3/2 fv (r)¥ (r)fflr/E. 

As long as W is no more divergent than r~c, c<3, <£(0) is finite. 
Even for the anomalous solutions for the Coulomb potential, this 
condition is satisfied. 

either event, the energy would cease to be simply e2/2r; 
there would be additional magnetic and multipole 
terms. It is also unlikely that a meaningful collective 
description could be obtained with three or less degrees 
of freedom, and this would be necessary in order to 
employ a one-body formulation. 

In the case of a spherically symmetric charge distribu
tion with vanishing angular momentum, we can write 
the NR Hamiltonian as 

H= \ (pr
2/2m0+e2/r) = E, (4.1) 

where pr=tnovr is the total outward radial momentum, 
vr the common radial velocity of all the elements of the 
system, m, the total mass, and E the energy. In addition, 
in the rest frame of the system, we can also obtain a 
simple form for the relativistic total energy of the 
system.18 

(W-e2/2r) = (woV+c2^2)1/2, (4.2) 
or 

(W-e2/2ry=nio2c*+c2Pr2. (4.3) 

This again has the form of a one-particle expression. 
Writing this equation in the form 

W2= nto2c*+c2pr
2+We2/r-e*/4:r2, (4.4) 

reveals the interesting result that W can be less than 
m0c

2 for sufficiently small values of r. The presence of the 
— e4/4r2 term in the relativistic energy expression, which 
the classical one does not have, endows the system with 
an effectively attractive potential (at small distances). 
If it should have made sense to include an angular 
momentum term in Eq. (4.4), it would have been 

W2=tn0
2c*+c2pr

2+We2/r+ (4L*c*-e?)/4r*. (4.5) 

An angular momentum L>e2/2c, or L/ft>e2/2hc would 
nullify this binding term. This very small value provides 
an interesting consistency with the previously stated 
limitation to L=0. According to Eq. (4.4), real values 
of pr exist at arbitrarily small r which satisfy the equa
tion for a constant value of W. 

Figure 1 shows c2pr
2= W2-m0

2^- (We2/r2)+ (e4/4r2) 
plotted against r. The asymptotic value W2—nto2c4 is 
positive for curve A and negative for curve B. As long as 
JF2>w0V, as for curve A, an ordinary classically ac
cessible region exists (the hatched region I under the 
curve ̂ 4). 

There is another region, designated II, for which 
real values of the momentum exist; viz., pr

2>0 for 

18 This follows by carrying out the sum in the expression 

~ f (E?+H*)dv+2 (AiW0c
2)/ (1 -z^A2)i'2, 

over all the elements AiMoc2 in the spherically symmetric rest 
system; cf., L. Landau and E. Lifshitz, The Classical Theory of 
Fields (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1951), p. 79. Although this basic expression is 
invariant to a Lorentz transformation, the reduction to a simple 
one-particle-like description can only be carried out in the rest 
frame. 
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V0(r) 

e2/4m0c2 

*• • • o 2 / 2 m c 2 » 

/ 

• L\ 
f\ 

X . 

r 

If we set W—m0c
2=E, then we can write Eq. (4.7) as 

E=pry2m + Va(r), (4.9) 

FIG. 2. Approximate classical potential for a relativistic charged 
sphere with angular momentum L = 0. 

r<e2/2(W+moc2). However, its existence depends on 
the negative root of the mechanical energy expression, 
which is normally excluded in classical mechanics. One 
can see this by writing Eq. (4.4) in the form , 

W= (e2/2r)± (mt*+c*pr%)u*. (4.6) 

Clearly, for constant W at arbitrarily small r we must 
choose the negative root (which our original purely 
classical expression did not have). This region will be 
accessible in quantum mechanics since negative energy 
states quite naturally enter it and are allowed. The 
mechanical energy term whose absolute value is 
(mo2c4-\-c2pr

2)1}2 must be large and negative in order to 
cancel the large positive value of the field energy e2/2r, 
to within the constant energy difference W. This should 
be the precise realization of the model referred to by 
Dirac,19 but whose description he avoided since his 
intent was the construction of electrodynamics rather 
than a particle model. Classically, the system in this 
state would be dynamically unstable. The outward re
pulsive Coulomb force acting on a negative-mechanical-
mass-sphere should collapse the sphere into the origin. 
However, in quantum mechanics, one might hope to 
avoid this collapse, as in the usual transition from a 
classical to a quantum system. There is no simple N R 
analog to this behavior near the origin. In the com
plete NR limit, the term depending on e4 in Eq. (4.4) 
vanishes and this equation yields back Eq. (4.1). This 
latter equation cannot have E < 0 for real values of p. 
If rather than taking the complete NR limit of Eq. (4.4), 
we neglect W—moc2 relative to ntoc2 [i.e., set W2—moc2 

= (W—moC2)X2moc2'], we obtain 

W^m0c
2+ pr

2/2mo +We2/2mQc2r -e4/8w0cV2 , (4.7) 

with the condition that 

pr2/2m0 +We2/2m0c
2r -^/Smoc2r2<^m0c\ (4.8) 

with 
F 0 ( r )= (W/mQc2)e2/2r -e*/%rn*c2r\ (4.10) 

»P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938). 

In this approximation our model relates to classical N R 
behavior in the potential well F0(r), which is shown in 
Fig. 2 for W—m^c2. The subscript 0 is placed on V0 to 
emphasize the restriction to 1=0. As long as r>e2/2moc2 

the customary "blowing up" of the sphere occurs from 
the repulsive Coulomb force. However, if r<e2/2moC2

9 

this force is inward, and classically the sphere tends to 
collapse. The dynamics of the potential of Eq. (4.10) is 
not straightforward, however, because of the energy de
pendence it exhibits. An explicit solution for the energy 
E can be readily obtained; it is 

E = {pr2/2m0 +e2/2r-e*/8ni0c
2r2}/(l -e2/2tn0c

2r). 

B. Suggested Quantum Mechanics of a 
Charged Spherical Shell 

Since the anomalous solutions, to be interpreted as 
wave functions, must describe bound states and, fur
thermore, are satisfactory in relativistic theory only, we 
interpret this to mean that if they describe a physical 
system, this system must cease to exist, or cease to be 
bound, in the NR limit. As we have shown, this is the 
case in classical theory for repulsive pure-Coulomb 
systems for which E<0 and the angular momentum 
vanishes. Such a system can be bound in the classical, 
relativistic theory (if we include negative mechanical 
energies); however, in the NR limit it reverts to the well-
known situation in which only values of E > 0 are 
allowed (unless, of course, an additional attractive po
tential is supplied at the origin). This is due to the 
existence of an effectively attractive potential term in 
the relativistic Hamiltonian, which dominates in the 
region of r~e2/mc2. However, the NR limit of the wave 
function for this system cannot behave properly at the 
origin since, in this limit, no attractive potential exists 
there. I t is reasonable, therefore, that the N R wave 
function obey a Schrodinger-like equation, but with an 
unsatisfactory behavior at the origin. As we have 
already pointed out, two real particles, either repulsive 
or attractive, cannot form a meaningful pure Coulomb 
system (viz., a system for which the Coulomb potential 
Ze2/r remains valid as r —•» 0). A simple charged sphere 
is such a system (a charged sphere with a point charge 
rather than a real charge at the center would also be 
such a system, but probably not a meaningful one, since 
the whole "point" of a particle model is to avoid point 
particles). In a sense, it is an artificial system, but be
cause of its importance as a particle model in classical 
electrodynamics it is worth investigating. 

Since we have not yet been able to perform the 
required normalization integrations [of the form 
J%e~ppQ\l/(a,c,p)2dp'} in the general case for any energy, 
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we select the analytically simplest situation as an 
exploratory example. This example for which the inte
grations can be readily performed is the case W=moc2, 
viz., the total energy is equal to the rest mass of the 
sphere. 

The RS equation for the Coulomb potential is well 
known.1*6 If we set W=moc2 in this equation with the 
repulsive Coulomb potential eV(r) = Ze2/r, we obtain 

d2y ldy f 4 / ( H - l ) + l - 4 7 2 l 
* - - - I l + y = 0 , (4.12) 

dt2 t dt t2 

(4.13) 

where use has been made of the definitions 

ao=fi2/me2
} 

t= (8Zr/ao)1/2, 

y—Ze2/ficy 

R(r) = Ny(t)/t. 

The solutions to Eq. (4.12) are Hankel functions of 
order y= [ (2H- l ) 2 —4T 2 ] 1 / 2 so that the radial wave 
function becomes 

R(r) = NH,V>(ti)/L (4.14) 

If we could normalize the \[/ function in the general case, 
we could, of course, make use of the connection be
tween Hv

a) and limit of ^(—a, c; p/a) as a—>0. From 
the behavior of Hankel functions at the origin20 

iHwM(it)£ 
(„-l)/2y 

t91C \ t / 
t->0 (4.15) 

we obtain the behavior of R(r) to be 

R(r)~l/tv+\ (4.16) 

and find that R(r) is integrable for both 1—0 and l=%. 
The latter case is integrable in spite of the fact that 
there is no "classical" interpretation of such a bound 
state in terms of an effectively attractive potential at 
the origin [cf, (Eq. (4.5)]. Since it requires two angular 
coordinates in addition to the radial coordinate it is 
unlikely that we can associate this / = J solution with a 
sphere. Therefore, we defer a discussion of this solution 
to Sec. V and consider only the 1=0 case at this point. 
We interpret R*(r)R(r)r2dr as the probability that the 
shell lies between r and r+dr, and normalize R(r) ac
cording to 

/ 
R?(r)r*dr=l, (4.17) 

the normalization constant N is given by 

N~2=l(—\ f [ f f ( i - 4 7 y/» w (*0]W*. (4.18) 

The integral can be computed to an adequate approxi
mation for our present purpose by neglecting 4y2. The 
result is, for the radial wave function, 

R(r)=(96T2Zz/ao*y'2Ha-AyynW(it)/L (4.19) 

If we interpret the square of this wave function as a 
radial charge distribution, its mean radius, defined as 

- / • 

R2(r)r3dr, (4.20) 

turns out to have the value (3x2a0 /64Z)/[23 r /1 ) (ifiYPdt. 
This can be evaluated and yields 

f a (3/10) ( V Z ) (4.21) 

20 E. Jahnke and F. Emde, Tables of Functions (Dover Publica
tions, Inc., New York, 1945), 4th ed. 

to the lowest order in y2. The result is large in terms of 
the classical electron radius and the region where the 
"attractive potential' ' term dominates. However, we 
have set E=tnoC2 so that there is no binding energy. 

V. THE HALF-INTEGRAL, ZERO-ENERGY ANOMALOUS 
SOLUTIONS AS INTRINSIC WAVE FUNCTIONS 

A. Suggested Physical Interpretation 

I t seems unlikely that the half-integral anomalous 
solutions that we have found, involving as they do, the 
three coordinates of a point, can be associated with a 
symmetric spherical shell as their classical model. Diffi
culties arise in denning the meaning of ^ r*(r)^ r(r) as 
there is no point to single out in this model with which 
to associate a probability or charge density. In the / = 0 
RS case, the one coordinate involved appears compatible 
with the one coordinate needed to define a sphere, and 
we suggested that *&*(r)^(r)r2dr can be interpreted as 
the probability that the shell lies between r and r+dr . 
There is one other "classical model/ ' if it can be called 
that, that may be describable by an exact Coulomb 
Hamiltonian, and the conjecture that it is provides a 
basis for the physical interpretation of the half-integral 
anomalous solutions. The conjecture is as follows. I t is 
well known that an electron exhibits a fluctuating be
havior about its mean position, known as "zitterbeweg-
ung."21 We propose that a particle experiences a re
pulsive Coulomb self-potential in the process of 
fluctuating or oscillating about its mean center-of-mass 
position. This self-potential would arise from the emis
sion and absorption of virtual photons, the process 
which leads to the self-energy. We expect to associate a 
probability (and, hence, a charge) distribution with this 
fluctuating motion, and consequently need a wave 
equation to generate it. Analytically, what is proposed 
is as follows. The relativistic wave equations for the 
motion of a particle are obtained by adding the external 
potential —A^i) to the energy-momentum 4-vector p^ 
either squaring or dotting into y^ (the Dirac matrix 

21 M. E. Rose, Relativistic Electron Theory (John Wiley & Sons, 
Inc., New York, 1961). 
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4-vector) to obtain an invariant expression, inserting the 
operators for p^ and generating a wave function ^ ; e.g., 

(cpli—eAfl)y^=m0c
2^. (5.1) 

However, the particle itself generates a potential 4-
vector 

( e\ e \ 

c(r—Y-r/cY r—vx/cj 
Therefore, we postulate that if we insert this potential 
(as a self-potential) into Eq. (5.1) and solve it in the rest 

frame of the particle, that we will obtain the motion of 
the particle relative to its own center-of-mass (which 
remains at rest). Since the vector potential vanishes 
in the rest frame, we assume a simple static Coulomb 
self-potential 

V(r) = Ze2/r, (5.2) 

should be inserted in the wave equation and the total 
energy set equal to m^c2. The factor Z is retained 
throughout to indicate scaling on the value of the 
charge, but it is expected to have the value unity. We 
would expect to interpret the motion as either a rotation 
or a fluctuating motion caused by the emission and self-
absorption of photons, or both. We thereby postulate a 
concrete dynamical model to the notion of zitterbeweg-
ung. The solution to the resulting "intrinsic" wave 
equation yields quadratically integrable, bound-state 
type wave functions some of whose average spatial ex
tensions are of the order of e2/m$c2 and rms extensions 
are ^h/mQc, and which are, therefore, consistent with 
the initial postulate. I t is well known that the Coulomb 
interaction between two particles can be interpreted as 
arising from the emission and absorption of virtual 
photons. Our postulate should, therefore, be equivalent 
to assuming that the emission and self-absorption of 
photons by a particle results in the particle experiencing 
a repulsive Coulomb self-potential. 

The solutions we obtain in this fashion are only for 
the one energy W=moC2; the repulsive anomalous solu
tions are integrable in general for all E<moc2. We as
sume that this freedom will ultimately allow the in
clusion of higher order radiative effects than a simple 
Coulomb self-potential, and a difference between the 
mechanical mass m0c

2 that should be inserted in the 
intrinsic equation, and the total energy W that would be 
the actual observed external rest mass. 

We note that obtaining a radius in this fashion (which 
is ^e2/m0c

2) would not imply a localization of a particle 
to within this distance, since the coordinate r can only 
be an internal one; viz., the equation we solve is obvi
ously not the equation for the center of mass of the 
particle. We assume that a theory could be formulated 
such that the c m . obeyed the customary equations for a 
point particle, and can be bound or free according to the 
well-known circumstances and models. The expressions 
for the mean radii of the order of e2/m0c

2 are of the form 

f.ocy2a0. 

Hence, in the NR limit, f —-> 0 and we return to a point 
particle. The solutions pass over, in the NR limit to 
solutions of the Schrodinger equation 

where 
%2 Ze2 

H= V H . 
m r 

This is the origin of our terminology "zero-energy" 
solutions. We can alternatively exhibit the consistency 
of our conjecture as follows. Consider a charge distribu
tion of the form 

p(r) = C/r»-*, (5.3) 

where C is a constant and 72<<Cl. A test charge in this 
distribution will experience a radial electric field Er 

which can be obtained from Gauss' theorem : 

1 r C 
Er=— / pdv/r2= (5.4) 

4TTJ 0 r2^2 

Therefore, a particle in this distribution will experience a 
Coulomb field to lowest order in y2. If we interpret the 
anomalous l=\ solutions to the exact Coulomb prob
lems as wave functions, the charge distributions they 
yield (averaged over angles) have the form given in 
Eq. (5.3) for small r. Thus, to terms of order y2, this 
charge distribution obtained from a Coulomb potential, 
yields back a Coulomb potential. Outside the range 
r~e2/mc2 the distribution falls off exponentially, so that 
the potential becomes accurately Coulombic outside 
this range. [Actually, the appearance of y2 is a quantum-
relativistic effect which probably should be ignored in a 
classical consistency argument such as is constituted by 
Eqs. (5.3) and (5.4) and the argument phrased as 
follows: the charge distribution Eq. (5.3) can be made 
arbitrarily closely consistent with the Coulomb field of 
Eq. (5.4) for sufficiently small y2.~] 

Making use of this interpretation in quantum theory 
will ultimately require the obtaining of a relativistically 
invariant separation of the motion of a particle into a 
motion of its center of mass and the "zitterbewegung" 
motion relative to the center of mass (cm.). If this is 
obtainable, then in the absence of any interaction be
tween the motion relative to the c m . and the motion of 
the cm., the wave equation for the total motion will 
separate into an equation for the motion of the cm. 
(which would be the currently accepted point-particle 
equations) and an equation (the one we are dealing with 
here) for the motion relative to the cm. The total wave 
function will then be a product ^r(rc.m.)^r(ri) of the 
usual wave function interpreted as ^( r c . m . ) and our 
internal wave function ^(r*) . In this fashion, the results 
of present ordinary quantum mechanics are reproduced 
as long as the internal state does not change, and by 
orthonormality ^( r *) drops out of the computation of 
experimental predictions. The internal Dirac wave 
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function, being an eigenfunction for j—Q, would not 
affect the usual angular momentum and spin of a Dirac 
particle described by \I>(rc.m.). Thus, to first and pos
sibly higher order there would be no corrections in 
Dirac theory. The first-order corrections to the energy 
that would arise from the finite extension of the charge 
cloud vanish due to the angular behavior of the charge 
clouds of the anomalous solutions; viz., 

V(R) 
p(r)dv 

~J IR-rf R 
-+0(R~*). 

In the RS case, it is not readily apparent which, if any, 
real particles might be described by the / = § solution 
[Eq. (2.26)]. I t appears a possibility, however, that the 
RS theory might now yield an alternate way of de
scribing an electron. The effects of spin would be added 
by first-order corrections via the half-integral internal 
solution, and treated, therefore, in ordinary configura
tion space. 

The general problem of half-integral angular mo
menta has been considered before.22-25 Pauli22 showed 
that NR transition probabilities between half-odd-
integral states are not, in general, well behaved. His 
arguments do not, however, apply to the relativistic 
case, where there have been previous indications23 that 
they may be needed to describe extended systems. (In 
Dirac theory, the probability current does not involve 
the derivatives of the wave function; hence, the re
quirements of good behavior are not as stringent as in 
N R theory.) One can readily verify25 that both half-odd-
integral and integral angular eigenfunctions cannot 
occur in the description of a given system. Because of 
this, the half-integral hydrogen-like spectrum of the 
Dirac and NR Schrodinger equations for the Coulomb 
potential can be disallowed on the basis of the experi
mental verification of the validity of the integral spec
trum. [Cf., e.g., Eq. (2.5); this is satisfied by a spectrum 
of energy values for K = § , §, f, • • •. The complete set of 
angular momentum eigenfunctions generated by this 
spectrum are the half-odd-integral spherical harmonics. 
These lead to single-valued well-behaved probability 
and current densities.] The problem discussed by Pauli22 

crops up in a theory which requires a set of half-integral 
spherical harmonics, corresponding to different values 
of the total angular momentum. The models to which 
we suggest in this paper that these solutions belong re
quire only a single total angular momentum eigenvalue 
for a given system, therefore, this problem does not 
arise here. 

I t appears likely, on the basis of Pauli's arguments, 

22 W. Pauli, in Handbuch der Physik, edited by H. Geiger and 
Karl Scheel (Springer-Verlag, Berlin, 1933), 2nd ed. See especially 
p. 126. 

23 D. Bohm, P. Hillion, and J. P. Vigier, Progr. Theoret. Phys. 
(Kyoto), 24, 761 (1960). 

24 G. Lochak, Cahiers Phys. 102, 1 (1959). 
25 David Bohm, Quantum Theory (Prentice-Hall, Inc., Engle-

wood Cliffs, New Jersey, 1951). 

the indications from studies of extended relativistic 
systems,23,24 and the results presented herein, that the 
half-integral angular momentum eigenfunctions may 
only pertain to relativistic cases that have no adequate 
NR limit. 

B. Computation of Normalization Constants 
and Mean Radii 

1. l=%RSCase 

On the basis of the preceding postulates we consider 
the rest frame of the particle only, and assume that the 
total energy is to be identified with the rest mass of the 
particle. The half-integral solution to the zero-energy 
repulsive Coulomb RS equation, Eq. (4.12) is then 

s i n 1 ' 2 ^ ^ 2 

y±(r) = NZH2il-7yn(»(U)/Q . (5.5) 

Normalizing to unity, as before, [Eq. (4.17)], we obtain 

7 V - 2 = 2 ( — \ J [ f f ( w y / « < » ( * ) ] W / . (5.6) 

Evaluating this integral [see Appendix A, Eqs. (Al) 
through (A3)] we obtain, to lowest order in y2> 

N--
T T 7 / 8 Z \ 3 / 2 

4 \aoJ 

The mean radius, defined as 

is given by 

***r*drda, (5.7) 

ZHa-yY'&KtyJMt-

The integral has the approximate value 128/57T2 so that 
f becomes 

f=y2(—W-V/W2. (5.8) 

The quasidivergent character of the wave function, 
Eq. (5.5), reduces the value of f by a factor y2 below the 
scale parameter of the equation (a0) so that f is of the 
order of magnitude of the "classical electron radius" 
$/niQC2. By use of Eq. (4.15) we can write the behavior 
of ^ as given by Eq. (5.5), at the origin, as 

/ 8 Z V 2 7 2 s i n 0 

Van/ r^2 

fSZy2y2smd 

which is the basis of our previously stated Eq. (5.3). 

(5.9) 
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2. j~0 Dirac Case 

We assume a radial wave function of the form 

This integral can be performed [see Eqs. (Al) through 
(A3) J with the result that N+ is given by 

\F(r)/r) 
N+=-

try 

(ao/Z) 1/2 
(5.17) 

and set W==moc2 in the Dirac equation for the repulsive 
Coulomb potential Ze2/r. This yields the coupled, first-
order equations 

to terms of order y2 in comparison. With this result, the 
average radius, 

dG 

dx 

j K ( 7 \ 
- + - G - ( 2 — )F=0, 
e x \ x/ 

dF K y 
F—G=0, 

(MJV JV JV 

- / 
f = / t[&(r)+F*(r)yr (5.18) 

(5.10) can now be computed for the n—\ solution. Neglecting 
the small function compared to the large leads to the 
result 

<V 

where y=Ze2/hc, x—fir, and /?=m^c/tt. K is an eigenvalue 
of the operator whose square is defined by the equation 

(L+iftay+i¥=fih2 

(cf., reference 6, Sec. 44 for notation). Elimination of G 
between the two linear equations, Eq. (5.10), leads to 
the second-order equation for F: 

f+= N+2 / [UE^^(it)JtHU (5.19) 
32Z2 J 

The integral has the value 128/57T2 again to terms of 
order y2. Inserting N+ from Eq. (5.17) we obtain 

/aQ\ 
(e2/m0c

2)Z, (5.20) 

d2F ldF 

dt2 t dt 

r 4 K * - 7
2 ) 1 

(5.11) to the accuracy already stated. The computation of 
(r2)av can be carried out similarly. The result is 

which is independent of the sign of K. In this equation, 
we have made use of the substitutions 

t2 22 SrZ/ao and a0=n2/moe2
i 

as in Eq. (4.13). This again [cf., Eq. (4.12)] is a Bessel 
equation whose solution that vanishes at infinity is 

(r% 
«o3 f 

N+* / [« 
28Z3 J 

litH^^{U)JMt. (5.21) 

F=constX#,.(1)(*X>, (5.12) 

In this case, the integral has the (approximate) value 
3X2 8 /7TT 2 , which yields 

(r2)&v=(3/7)y2(a0/Z)2, 

= (3/7)(ftyW)2 , 

with V=2(K2—72)1/2 where Bv
a)(if) is again the well-

known Hankel function. 
The solution for K = + J . The solution to Eqs. (5.10) 

when K=% can be written, by use of the Hankel function 
recurrence relations, in the form 

G+=iV+{«H(i-47")^»+i(1)(«) 

- [ ( l - 4 7
2 ) 1 / 2 - l ] J H r ( i _4 7 V / 2 ( 1 ) ( ^ )} , (5.13) 

F+=-2N+ylH(1-iyy^(m (5.14) 

where 2V+ is a normalization constant. We choose as 
normalization condition 

or 

/ 
[ G ( r ) H - F ( r ) » > = l , (5.15) 

and neglect terms of order y2 in order to obtain a value 
of N+ accurate to this order. The normalization condi
tion, Eq. (5.15) becomes, to this accuracy, 

(5.22) 

(/-2)av1/2==0.655(Vwo^). (5.23) 

The Solution for n— — | . For K= — J, the solution to 
Eqs. (5.10) can be written 

G_=N-{UH U-A7 2) i/2_i (it) 

- [ ( l - 4 7 2 ) 1 / 2 - l ] i y ( i - 4 7 v ^ - i ( ^ ) } , (5.24) 

F^2yN-[H^^!/««! (**)]. 

I t should be observed that in this case the large com
ponent has a term which vanishes as t —> 0 in addition 
to a quasi-divergent term of order y2. In some computa
tions with this function, the term of order y2 cannot now 
be neglected as it will dominate the "large" term as 
/ —> 0 in spite of the y2 coefficient. As before the nor
malization condition will be given by Eq. (5.15). By use 
of H-2/c== — 2y2 and by neglect of small terms, this 
yields 

(—W2 IZitH2-2y>(1) (it)Jtdt= 1. 

#0 

(5.16) 4Z • / 
•NJ I {WlH/»(Jt)J+4y2[itHv-i<»(it)HM(it)] 

+[UHr-1w(it)y)tdt= 1. (5.25) 
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The integrals can be worked out from the Appendix. 
The result is (again neglecting terms of order y2) 

i\L = (3x2Z/a0)
1/2. (5.26) 

It should be noted that N- does not contain a factor y 
as was the case for N+ in Eq. (5.17). This is one indica
tion of the great difference between the two solutions. 
The K== — J solution can be seen to have a "structure" 
to it in distinction to the simple monotonic behavior 
of the K= + | solution. 

The solution, Eq. (5.24), reduces in the limit to the 
nonrelativistic solution for l=— J. As previously men
tioned, the angular solution for this value of I is needed 
(both for K= + J and K— — §) so it is not surprising that 
the radial solution is needed also. Proceeding as before, 
to compute the mean radius, we find it is given ap
proximately by 

a0
2NJ> f 

f_= \P[iH^(U)ydt (5.27) 
32Z2 J 

The value of the integral is 64/157T2. Inserting Eq. (5.26) 
leads to the result, 

f_ = (l/10)oo/Z. 

In this case, the rms radius turns out to be 

(r_2)av
1/2=(27/280)1/2(a0/Z). 

VI. CONCLUSION 

We have shown that the anomalous solutions can be 
discarded, at least on physical grounds, for the attrac
tive two-body systems which are already known to be 
described adequately without them. It is proposed that 
they indicate that quantum mechanically, a repulsive 
pure Coulomb system need not blow up from its internal 
electrostatic stress. The author's attention was drawn to 
these anomalous solutions by the initial conjecture, 
presented in Sec. V, that the solution of the wave 
equations for £ = 0 or W=moc2 should yield an intrinsic 
description of a particle via its instantaneous motion 
relative to its cm. As stated previously, extensive 
calculations have been carried out beyond the simple 
mean radii ones presented herein that appear to indicate 
physical consistency for this idea. However, as is obvi
ous, the scope of establishing an adequately consistent 
theory of elementary particles along these, as along any, 
lines is formidable. In view of this and the unorthodox 
nature of the approach, it seems desirable to present the 
basic ideas and simple descriptive results only, as we 
have done, and defer more elaborate computations to 
another paper. Most, if not all, the parameters de
scribing elementary particles require the inclusion of 
radiative interactions for their description. Our pre
liminary results indicate that these can be included in 
our intrinsic wave equations to permit particle decays, 
and to cause a coupling to arise between the internal and 
external degrees of freedom. We hope to report on these 

results in a subsequent article. One of the solutions we 
consider here was obtained before by Temple.26 Our 
current speculations are not totally unrelated to his, but 
the problems in setting up a theory such as he attempted 
are now known to be vastly more difficult than his 
attempt would imply. 
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VII. APPENDIX. THE EVALUATION OF INTEGRALS 
INVOLVING PRODUCTS OF TWO 

HANKEL FUNCTIONS 

The normalization and mean radius integrals of the 
"zero-energy" equations Eq. (4.12) and (5.10) are of the 
form f^H^WH^iityvdt. Some of these can be 
obtained, upon neglect of terms of order y2, directly from 
the reduction formulas given by Watson.27 Those which 
are of a quasidivergent nature; viz., those whose 
integrands behave like f1+y2 at the origin can be 
integrated by an intuitive procedure, wherein one re
places the Hankel functions by their behavior at the 
origin [Eq. (4.15)] and integrates from zero to some 
small but finite value of /. To terms of order y2

} the 
divergence of the integrand at the origin yields the full 
value of the integral from zero to infinity. That is to say, 

f [fl£rM7"
(1) (#)?*» 

24 r8 dt 2454^2 4 
S— / = S . (Al) 

ir2 Jo t1'^2 7r247
2 fl-V 

An exact result is obtainable, although the expression is 
somewhat more cumbersome12: 

2"+ 2 r ( l -p) / ' K,>(a£)K9(pt)t-'dt 
Jo 

f /l+V+fl — p 1 + V — jLt — p 

, _ p i l _ w ) } r (—_)r (__ ) 
/ l — V+fX — p \ /l—V — fJL — p \ x r (^—K—r-> (A2) 

26 G. Temple, Proc. Roy. Soc. (London) A145, 344 (1934). 
27 G. N. Watson, Theory of Bessel Functions (Cambridge Uni

versity Press, New York, 1952), 2nd ed., Sees. 5.11-5.14. 



2518 B A X T E R H . A R M S T R O N G 

where Kv(t) = (Tri/2)eiTv/2Hv^(it). The conditions for 
the validity of this expression are given in reference 12 
as Re (<*+/?) > 0 and Re(p=bAt±^+l)>0. However, the 
sign of p in the second condition is incorrect. The basic 
requirement is that the integral converge,28 and the ex
pression, Eq. (4.15), for Hy

(1)(t) for small t can be used 
to establish the correct limitation on p, /*, and v. 
Convergence at infinity is assured by the exponential 

28 E. C. Titchmarsh, Proc. London Math. Soc. 2, 97 (1927). 

behavior of the K functions at large distances. For the 
quasidiverge nt integrals needed in the text, a = (3, and 
ix—v. In these cases, Eq. (A2) simplifies to 

/ 
K2(t)tndt= 

2*1-2 

r(i+»)" ii+-+d 
/1+w Kr-> (A3) 
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Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas 
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The well-known first two terms in the asymptotic density series for the ground-state energy of a Bose 
gas, Eo—2irNpa[\-\- (128/15 V*r) (pa8)1'2], where a is the scattering length of the pair potential, is ordinarily 
obtained by summing an infinite set of graphs in perturbation theory. We show here how this same series 
may be obtained by elementary methods. Our method offers the advantages of simplicity and directness. 
Another advantage is that the hard-core case can be handled on the same basis as a finite potential, no 
pseudopotential being required. In fact, the analysis of the hard-core potential turns out to be simpler than 
for a finite potential, as is the case in elementary quantum mechanics. In an Appendix we discuss the high-
density situation and show that for a certain class of potentials Bogoliubov's theory is correct in this limit. 
Thus, Bogoliubov's theory, which is never correct at low density unless a pseudopotential is introduced, is 
really a high-density theory. 

INTRODUCTION 

IMPORTANT and often brilliant theoretical investi
gations by many workers in the past few years have 

given us considerable insight into the nature of the 
ground state and low-lying excited states of a many-
particle Bose gas at low density with repulsive pairwise 
forces. While the intermediate density problem is still 
unsolved, we at least know now how to begin a con
sistent expansion (possibly divergent) in the density. In 
appropriate units1 we have the following well-known 
formulas for the ground-state energy, E0, and the 
energies of the elementary excitations of long wave
length, e(k): 

Eo=2irNpa{l+(12S/15Vw)(pa^2+' • • } , (1.1) 

e(k) = 2 (7 rpa) 1 ^+- - - , (1.2) 

where TV is the number of particles, p=N/V is the den
sity, and a>0 is the scattering length of the two-body 
potential. The omitted higher terms in Eq. (1.1) depend 
upon the shape of the potential as well as the scattering 
length; Eq. (1.2) is justified if K<(pa)1/2. 

While Eqs. (1.1) and (1.2) may now be regarded as well 
established and, therefore, elementary, it was not always 
so. The first attempt to find E0 was based on perturba
tion theory. Aside from the fact that perturbation 

1n=l, m — 1. 

theory cannot be justified in this case (EQ is enormously 
greater than the spacing between the unperturbed 
ground and first excited states), it is easily seen that all 
terms in the perturbation series beyond the second are 
divergent for any potential. By this is meant that 
although the terms are not actually infinite, they are 
proportional to a higher power of N than the first. 

Nevertheless, it was held for a long time that the 
first term in the perturbation series, viz., 

E^2irNpaf, (1.3a) 

where 
a'=— fv(x)d% (1.3b) 

4TT7 

was exact,2 v(x) being the two-body potential. Equation 
2 We must be careful to define the meaning of exact and approxi

mate as used in this paper. We are interested in calculating Eo 
as a function of density for a given fixed potential; we are, there
fore, concerned with an asymptotic series in the density whose 
coefficients, and, indeed, whose entire form are functional of the 
potential. As such, Eq. (1.1) is exact in that it gives correctly the 
first two terms in an asymptotic series. Equations (1.3) and (1.6) 
are only approximations to that series. If, on the other hand, we 
regard the potential as being proportional to some parameter, X, 
and if we were interested in a double expansion in p and X, then 
Eqs. (1.3) and (1.6) would be exact. We are not interested in this 
latter type of series because for a large potential, such as a hard 
core, it is relatively useless. Indeed, there is no need for such a 
double series, because it is the burden of this paper, as well as of a 
good deal of previous work, that it is just as easy to generate the 
former type of single series as the latter double series. 


